Article ID Journal Published Year Pages File Type
1551917 Solar Energy 2008 12 Pages PDF
Abstract

This paper presents a simple building simulation tool for integrated daylight and thermal analysis. The tool is capable of importing the thermal and visual properties for different glazings and shading positions from the Window Information System (WIS) program. A coupled ray-tracing and radiosity methodology is used to derive the daylight levels for different sky conditions. Both detailed daylight distribution for a particular day and time and hourly discrete values on a yearly basis may be obtained. For an integrated simulation the hourly daylight levels are fed into an existing simple thermal simulation program capable of calculating energy demand and the indoor environment. Straightforward control systems for general and task lighting systems have been implemented together with a shading control strategy that adjusts the shading according to the indoor operative temperature, the risk of glare and the profile angle of the sun. The implemented daylight calculation method allows for shades from the window recess and overhang, and for distant shades blocking the sky vault. Comparisons with the ray-tracing program Radiance show that the accuracy of this approach is adequate for predicting the energy implications of photoresponsive lighting control. The amount of input is small, which makes the tool useful for integrated daylight optimisation in the early design process.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , ,