Article ID Journal Published Year Pages File Type
1552144 Solar Energy 2008 14 Pages PDF
Abstract

REST2, a high-performance model to predict cloudless-sky broadband irradiance, illuminance and photosynthetically active radiation (PAR) from atmospheric data, is presented. Its derivation uses the same two-band scheme as in the previous CPCR2 model, but with numerous improvements. Great attention is devoted to precisely account for the effect of aerosols, in particular.Detailed research-class measurements from Billings, OK are used to assess the performance of the model for the prediction of direct, diffuse and global broadband irradiance. These measurements were made in May 2003 during a sophisticated radiative closure experiment, which involved the best radiometric instrumentation currently available and many ancillary instruments. As a whole, these exceptional measurements constitute the only known modern benchmark dataset made specifically to test the intrinsic performance of radiation models. Using this dataset as reference, it is shown that REST2 performs better than CPCR2 for irradiance, illuminance or PAR predictions. The availability of the turbidity data required by REST2 or other similar models is also discussed, as well as the effect that turbidity has on each component of broadband irradiance, PAR irradiance and illuminance, and on the diffuse/global PAR ratio.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
,