Article ID Journal Published Year Pages File Type
1552341 Solar Energy 2006 10 Pages PDF
Abstract

When striving for maximum efficiencies in solar thermal central receiver systems (CRS) the use of gas turbines with bottoming cycles is inevitable. Pressurized volumetric receivers have proven their feasibility and good performance, and their integration into gas turbine cycles has been demonstrated. One disadvantage of this system is the necessity to use secondary concentrators. The sunlight has to be concentrated into the relatively small glass windows of the receiver, which leads to a limited view cone. This means that of all the possible heliostat positions around the tower, only those within the ellipse, resulting from the section boundary of the view cone with the ground plane, are usable.For small systems, for which tower costs are small, the resulting heliostat field layout is similar, with or without secondary concentrator. For large systems, which are more cost-effective, tower costs become significant, and the losses due to atmospheric attenuation and spillage dominate over the cosine losses. Thus, the purely North-oriented fields become increasingly sub-optimal.This article shall demonstrate at what power levels this problem can be alleviated by not using a single, North-oriented aperture, but up to six apertures—each of them associated with a separate heliostat field.

Related Topics
Physical Sciences and Engineering Energy Renewable Energy, Sustainability and the Environment
Authors
, , , ,