Article ID Journal Published Year Pages File Type
1552490 Superlattices and Microstructures 2016 10 Pages PDF
Abstract

•Statistical fracture is explained by broken bonds and tensile wave propagation.•The deformation mechanism relies on moving styles of slipped crystalline planes.•The size (10a) is observed to be a transitional point of mechanical stability.

The fractures of ultrathin metallic nanowires usually exhibit their uncertainties at small scales. Here, statistics was used to study the uniaxial tension-induced deformation of ultrathin gold nanowires. With the same cross section of gold nanowires (5a × 5a × Ha), different sizes show various deformation mechanisms due to the moving styles of slipped crystalline planes. However, the deformations at different sizes (5a × 5a × 5a) and (5a × 5a × 25a) both show the sensitivity to one atomic vacancy, attributed to the dominant role of the same cross section. The statistical broken position distributions further provide that the deformation fracture is size dependent and sensitive to atomic vacancies, which is explained with the relationship between broken bonds and tensile wave propagation. For the size dependence of mechanical property, the nanowire height (H) of 10a is observed to be a transitional point, when the height is less than 10a, the mechanical strength is unstable, while above this transitional point, mechanical strengths decrease with the nanowire size increasing. Our work provides mechanistic insights into enhancing the reliability of metallic nanostructures by engineering the internal atomic imperfection and structural dimensions.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,