Article ID Journal Published Year Pages File Type
1552935 Superlattices and Microstructures 2015 7 Pages PDF
Abstract
Recently, effect of proximity-induced ferromagnetism or superconductivity in two dimensional monolayer molybdenum disulfide on the energy dispersion of relativistic charge carriers has attracted much effort. Inequivalent nondegenerate K and K′ valleys resulted from strong spin-orbit coupling in monolayer MoS2 give rise to obtain novel behaviors in some physical phenomena, such as Andreev reflection or spin-valley transport properties, comparing with corresponding structure, graphene. Considerable direct band-gap in monolayer MoS2 makes it potentially useful for electronics applications. Motivated by these, we study, in particular, the influence of various combinations of valley and spin indices on charge transmission in the MoS2-based ferromagnetic/insulator/ferromagnetic junction. It is shown that the tunneling process is suppressed with arbitrary range of chemical potential for all incident electrons. We determine the exact magnitude of Fermi energy by chemical potential. Topological and mass-related terms (α,β) are taken into account in the Dirac-like Hamiltonian, and conductance resulted from the transmission probability is investigated in terms of physical parameters of structure. We, further, study the dependence of the magnetoresistance on exchange field for various cases of valley-coupling. Magnetoresistance of system is changed from a positive value to negative for K valley, only. The Klein tunneling is resulted in different exhibitations for different allowed spin and valley indices. As expected, the exact oscillations of transmission coefficient is found in terms of barrier parameter.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,