Article ID Journal Published Year Pages File Type
1553731 Superlattices and Microstructures 2013 6 Pages PDF
Abstract

Indium phosphide semiconductor quantum dots are of significant heed as their applications encompass a spacious concatenation in LEDs and solar cells technologies. For improving their serviceable prominence, there is a real demand for a fashion that furnishes prompt and large mass production of mightily monodispersed nanoparticles. This study conveys an efficacious and fast recipe of generating substantially monodispersed InP quantum dots via water based route technique using a novel surfactant. Herein, InP QDs have been prepared using 6-mercaptohexanoic acid for achieving an effective surface passivation of monodispersed InP QDs with highly luminescence at temperature 50 °C. The as prepared quantum dots were investigated by transmission electron microscopy, luminescence spectroscopy, and X-ray diffraction. The XRD depicted that the InP quantum dots have a cubic zinc blend structure. TEM image revealed that the prepared quantum dots are monodispersed and their average particle size of about 4 nm. Energy dispersive X-ray spectroscopy confirmed the existence of organic ligand as a shell around InP nanoparticles. Time resolved spectra depicted that the capping agent passivated the InP QDs surface and enhanced the luminescence emission.

► A novel strategy is used to prepare highly monodispersed InP QDs. ► Highly luminescent InP QDs were achieved using 6-mercaptohexanoic acid. ► Time resolved spectroscopy showed very fast average life time.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , ,