Article ID Journal Published Year Pages File Type
1554095 Superlattices and Microstructures 2012 7 Pages PDF
Abstract

This study reports a simple method for the synthesis of different size of wurtzite ZnO nanoparticles in assistance of tetraethyl orthosilicate (TEOS). With the increase of the amount of TEOS added, the average size of ZnO nanoparticles was found decreased from ∼14.6 to ∼1.9 nm by characterization of X-ray diffraction (XRD) and high-resolution electron microscopy (HRTEM). The growth of ZnO nanoparticles is proposed to be controlled by the density of the SiO2 chain mesh which is determined by TEOS amount in precursor. Ultraviolet–visible (UV–VIS) absorption and photoluminescence (PL) spectra show both shift to higher energy in cut-off edge and in visible emission bands respectively. The electron transition process in the mechanism of the visible emission shift was described and related to quantum size effect in ZnO nanoparticles.

► The simple synthesis of ZnO nanoparticles was developed in the SiO2 network. ► The average size decreases with the amount increase of TEOS in precursor. ► The visible emission peaks blue shifts with the increase of TEOS amount. ► Quantum size effect has been explained the visible emission band shift.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,