Article ID Journal Published Year Pages File Type
1554428 Superlattices and Microstructures 2010 10 Pages PDF
Abstract
We investigate theoretically the electronic transport through a parallel-coupled double quantum dot (DQD) molecule attached to metallic electrodes, in which the spin-flip scattering on each quantum dot is considered. Special attention is paid to the effects of the intradot spin-flip processes on the linear conductance by using the equation of motion approach for Green's functions. When a weak spin-flip scattering on each quantum dot is present, the single Fano peak splits into two Fano peaks, and the Breit-Wigner resonance may be suppressed slightly. When the spin-flip scattering strength on each quantum dot becomes strong, the linear conductance spectrum consists of two Breit-Wigner peaks and two Fano peaks due to the quantum interference effects. The positions and shapes of these resonant peaks can be controlled by using the magnetic flux through the quantum device.
Keywords
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, ,