Article ID Journal Published Year Pages File Type
1554490 Superlattices and Microstructures 2010 14 Pages PDF
Abstract
A Schottky diode was designed and fabricated on an n-AlGaAs/GaAs high electron mobility transistor (HEMT) structure for RF power detection. The processing steps used in the fabrication were the conventional steps used in standard GaAs processing. Current-voltage measurements showed that the devices had rectifying properties with a barrier height of 0.5289-0.5468 eV. The fabricated Schottky diodes detected RF signals well and their cut-off frequencies up to 20 GHz were estimated in direct injection experiments. To achieve a high cut-off frequency, a smaller Schottky contact area is required. The feasibility of direct integration with the planar dipole antenna via a coplanar waveguide transmission line without insertion of matching circuits was discussed. A higher cut-off frequency can also be achieved by reducing the length of the coplanar waveguide transmission line. These preliminary results represent a breakthrough as regards direct on-chip integration technology, towards the realization of a ubiquitous network society.
Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , ,