Article ID Journal Published Year Pages File Type
1554728 Superlattices and Microstructures 2009 6 Pages PDF
Abstract

In this paper, the device performance and complementary inverter of the InGaP/InGaAs/GaAs doped-channel field-effect transistors (DCFETs) by two-dimensional semiconductor simulation are demonstrated. Due to the relatively large conduction (valance) band discontinuity at InGaP/InGaAs interface, it provides good confinement effect for transporting carriers in InGaAs channel layer for the n-channel (p-channel) device. The large gate turn-on voltage is achieved due to the employment of the wide energy-gap InGaP material as gate layer. The ftft and fmaxfmax are of 6.5 (2.1) and 25 (5) GHz for the n-channel (p-channel) device. Furthermore, the co-integrated structures, by the combination of n- and p-channel field-effect transistors, could form a complementary inverter and the relatively large noise margins are achieved.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , ,