Article ID Journal Published Year Pages File Type
1555154 Superlattices and Microstructures 2007 5 Pages PDF
Abstract

Due to the small magnetic moments observed for 3d transition metals in ZnO [M. Diaconu, H. Schmidt, H. Hochmuth, M. Lorenz, G. Benndorf, J. Lenzner, D. Spemann, A. Setzer, K.W. Nielsen, P. Esquinazi, M. Grundmann, Thin Solid Films 486 (2005) 117], there is still space for optimizing ZnO-based diluted magnetic semiconductors for spintronics applications. Motivated by the observation of magnetic moments as high as 4000μB/Gd atom in GaN:Gd [S. Dhar, O. Brandt, M. Ramsteiner, V.F. Sapega, K.H. Ploog, Phys. Rev. Lett. 96 (2005) 037205], we investigated ZnO films doped with 0.01, 0.1 or 1 at.% rare earth (RE) metals. The films, with thicknesses between 20 nm and 1 μm, have been grown by pulsed laser deposition on aa-plane sapphire or fused silica substrates.The homogenous incorporation of the RE ions in ZnO was investigated by combined Rutherford backscattering and particle induced X-ray emission measurements. Hall measurements revealed an unexpected dependence of the electron concentration on film thickness, proving a non-uniform distribution of electrically active defects. Magnetotransport measurements at different temperatures were performed to study the magnetoresistance and the presence of the anomalous Hall effect. Large negative magnetoresistance was obtained at 5 K, while no anomalous Hall effect was observed. These results indicate that there are no exchange interactions between the RE ions.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , , ,