Article ID Journal Published Year Pages File Type
1555188 Superlattices and Microstructures 2007 6 Pages PDF
Abstract

ZnO nanorod arrays find applications in solar energy conversion, light emission and other promising areas. One approach to generate ZnO nanorods is the cost efficient aqueous chemical growth (ACG). Usually the ACG process is based on a nucleation step followed by growth of ZnO nanorods in aqueous solution at temperatures below 95 ∘C.We report on the fabrication of homogeneous, large scale arrays of nanorods on various substrate materials (Si, glass, polymer) by ACG. PL-measurements show surprisingly good optical quality although the rods were grown at low temperature.Even though we have developed patterning of these arrays with photolithographic techniques, a bottom up approach for lateral patterning is important concerning further applications especially for mass-production. The substrates with patterned metal layers were employed to realize selective growth of nanorods. The experiments were carried out on Ti-, Ag- and Pt-patterned substrates. Selective growth on metal structured glass substrates was developed and is described.

Related Topics
Physical Sciences and Engineering Materials Science Electronic, Optical and Magnetic Materials
Authors
, , , , , , ,