Article ID Journal Published Year Pages File Type
1555431 Current Opinion in Solid State and Materials Science 2015 9 Pages PDF
Abstract
As the length scale of materials decreases to the nanometer regime, grain boundaries occupy a relatively larger volume fraction. Consequently, they play an important role in stabilizing nanocrystalline systems. This review looks at the role of solute segregation to grain boundaries in stabilizing such systems. In recent years, grain size stabilization from solute segregation has led to new types of thermodynamic stability maps as a materials design tool. We propose to extend and adapt these concepts of grain boundary solute segregation as a stabilizing effect to thin film stress states. A recent study on Fe-Pt alloy films, where one species enriched the boundaries, was shown to manipulate the stress from tensile-to-compressive as a function of composition. This suggests that intrinsic segregation can be used as a tunable variable to manipulate stress states, analogous to changing film processing parameters, such as deposition rate and pressure. The application of such solute segregation is at the precipice of new opportunities in materials design of thin films.
Related Topics
Physical Sciences and Engineering Materials Science Materials Chemistry
Authors
, ,