Article ID Journal Published Year Pages File Type
1555683 Current Opinion in Solid State and Materials Science 2010 6 Pages PDF
Abstract

Pressure-induced plastic deformation and phase transformations manifested as the discontinuities displayed in the loading and unloading segments of the load–displacement curves were investigated by performing the cyclic nanoindentation tests on the (1 1 0)-oriented Si single-crystal with a Berkovich diamond indenter. The resultant phases after indentation were examined by using the cross-sectional transmission electron microscopy (XTEM) technique. The behaviors of the discontinuities displayed on the loading and re-loading segments of the load–displacement curves are found to closely correlate to the formation of Si-II metallic phase, while those exhibiting on the unloading segments are relating to the formation of metastable phases of Si-III, Si-XII, and amorphous silicon as identified by TEM selected area diffraction (SAD) analyses. Results revealed that the primary indentation-induced deformation mechanism in Si is intimately depending on the detailed stress distributions, especially the reversible Si-II ↔ Si-XII/Si-III phase transformations might have further complicated the resultant phase distribution. In addition to the frequently observed stress-induced phase transformations and/or crack formations, evidence of dislocation slip bands was also observed in tests of Berkovich nanoindentation.

Related Topics
Physical Sciences and Engineering Materials Science Materials Chemistry
Authors
, , ,