Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1555940 | Journal of Materials Science & Technology | 2015 | 7 Pages |
Abstract
Surfactant-free and binder-free antimony-doped tin oxide (ATO) transparent conducting thin films were fabricated through spin coating and rapid annealing processes, in which nanosheets were assembled into a compact structure via self-contracting high pressure. The mechanism of this compact thin film formation was further proposed and analyzed. The compact ATO thin film had a low root mean square (RMS) roughness of 5.03 nm. This surfactant-free and binder-free compact ATO thin film delivered low resistivity of 3.04 Ã 10â2 Ω cm, stable resistivity which only increased 13% after exposing in 65% RH air for half a month, high transmittance of 92.70% at 550 nm, and high band gap energy of 4.07 eV. This effective strategy will provide new insight into the synthesis of low-cost and high-performance compact thin films.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Chemistry
Authors
Junhua Zhao, Ruiqin Tan, Ye Yang, Wei Xu, Jia Li, Wenfeng Shen, Guoqiang Wu, Xufeng Yang, Weijie Song,