Article ID Journal Published Year Pages File Type
1556108 Journal of Materials Science & Technology 2014 7 Pages PDF
Abstract
The synthesis of Cu-doped ZnO nanosheets at room temperature was reported in our previous paper. The effects of annealing temperature on Cu-doped ZnO nanosheets were studied in this paper. Cu-doped ZnO nanosheets were annealed at 200-500 °C in air. The annealed specimens were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Cu concentration in Cu-doped ZnO nanosheets reduced with increasing annealing temperature. When annealing temperature was lower than Zn melting point (410 °C), the morphologies of the Cu-doped ZnO nanosheets remained nearly the same as that before annealing. However, when the annealing temperature was over Zn melting point, Cu-doped ZnO nanosheets changed to nanowires, wormlike nanosheets or did not change. The change of Cu concentration in Cu-doped ZnO nanosheets is explained by oxidation thermodynamics. A physical model is suggested to explain the morphology changes of Cu-doped ZnO nanosheets, based on the existence of Cu-rich layer beneath Cu-doped ZnO nanosheets.
Related Topics
Physical Sciences and Engineering Materials Science Materials Chemistry
Authors
, , , , , ,