Article ID Journal Published Year Pages File Type
1556503 Journal of Materials Science & Technology 2013 6 Pages PDF
Abstract
Cr is the most important element in nickel-based alloys to prevent high temperature oxidation and corrosion. However, high-Cr content will lead to a decline of hot workability which limits the addition of Cr for most nickel-based superalloys. In order to add more Cr into Ni-based alloy for improving high temperature oxidation and corrosion resistance, the poor hot workability of high-Cr alloy must be first solved. Deformation characteristic of a high-Cr nickel-based alloy (40 wt% Cr) under hot compression conditions at 800−1200 °C has been investigated by using a Gleeble 3500 machine, and the microstructural evolution during hot working process has been observed by optical microscopy and scanning electron microscopy. The results show that a high-temperature low-plasticity (HTLP) region exists in this high-Cr nickel-based alloy. This phenomenon can be attributed to its non-uniform interdendritic microstructure at high temperatures. These results can explain the poor hot workability of high-Cr nickel-based alloy.
Related Topics
Physical Sciences and Engineering Materials Science Materials Chemistry
Authors
, , , ,