Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1556685 | Journal of Materials Science & Technology | 2012 | 7 Pages |
Abstract
Creep and superplasticity were investigated by testing a fine-grained extruded Mg–Zn–Zr magnesium alloy under a wide range of applied stress in the temperature range between 100 and 300 °C. Grain boundary sliding became the dominating mechanism at 200 °C, leading to a true superplastic behaviour at 300 °C, where superplasticity was attained even under relatively high strain rates (5×10−3 s−1). By contrast, for lower temperatures, the straining process was controlled by dislocation climb. A comprehensive model, taking into account the simultaneous operation of the different mechanisms, was developed to describe the strain rate dependence on applied stress.
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Chemistry