Article ID Journal Published Year Pages File Type
1556720 Journal of Materials Science & Technology 2010 6 Pages PDF
Abstract

A single crystal Ni-base superalloy was processed with withdrawal rates between 2 and 7 mm/min. The as-cast microstructures, heat treatment response and creep property have been characterized as a function of the withdrawal rate. As expected, the primary and secondary dendrite arm spacing decreased with increasing withdrawal rate; microsegregation degree and porosity distribution were also varied with different withdrawal rates. The withdrawal rate of 2 mm/min resulted in a noticeable residual microsegregation even after full heat treatment. The samples solidified at 7 mm/min exhibited a high density of cast porosities, and this led to a dramatical decline of the creep strain. 4 or 6 mm/min appeared to be the optimum withdrawal rate in the present study, which resulted in a uniform microstructure and an optimum density of cast porosity.

Related Topics
Physical Sciences and Engineering Materials Science Materials Chemistry