Article ID Journal Published Year Pages File Type
1557925 Nano Energy 2014 8 Pages PDF
Abstract

•Well-crystallized α-MoO3 nanobelts were prepared by a hydrothermal method.•MoO3/PANI coaxial nanobelts were carried out via a simple and green approach.•The coaxial heterostructure nanobelt shows superior supercapacitor performance.•A high specific capacitance of 714 F g−1 at 1 mV s−1 in 1 M H2SO4 electrolyte.

A large-scale of MoO3/PANI coaxial heterostructure nanobelts have been fabricated for high-performance supercapacitors via a simple and green approach without any surfactant. Herein, the assembly of PANI conductive layer on the surface of the well-crystallized α-MoO3 nanobelts was carried out using ammonium persulfate (APS) as oxidant by in-situ polymerization at room temperature. As-prepared MoO3/PANI coaxial heterostructure nanobelts have been successfully employed as supercapacitor electrodes. It was found that the as-synthesized MoO3/PANI coaxial heterostructure nanobelts exhibited excellent supercapacitor performance with high specific capacitances of 714 F g−1 at a scan rate of 1 mV s−1 and 632 F g−1 at a current density of 1 A g−1 in 1 M H2SO4 electrolyte, whereas the original α-MoO3 nanobelts just showed initial specific capacitances of 275 F g−1 and 267 F g−1 at 1 mV s−1 and 1 A g−1, respectively, which attributed to the synergic effect between the PANI coating and the original α-MoO3 nanobelts.

Graphical abstractNovel MoO3/PANI coaxial heterostructure nanobelts fabricated on a large-scale by a simple and green approach without any surfactant exhibits high specific capacitance of 714 F g−1 at a scan rate of 1 mV s−1 and 632 F g−1 at a current density of 1 A g−1, as well as good cycling stability (76.7% of capacity retention after 3000 cycles).Figure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Energy Energy (General)
Authors
, , , , , , ,