Article ID Journal Published Year Pages File Type
1559197 Calphad 2011 8 Pages PDF
Abstract

The liquid–liquid equilibrium of polyethylene glycol dimethyl ether 2000 (PEGDME2000)+K2HPO4+H2O system has been determined experimentally at T=(298.15,303.15,308.15 and 318.15) K. The liquid–solid and complete phase diagram of this system was also obtained at T=(298.15 and 308.15) K. A nonlinear temperature dependent equation was successfully used for the correlation of the experimental binodal data. Furthermore, a temperature dependent Setschenow-type equation was successfully used for the correlation of the tie-lines of the studied system. Moreover, the effect of temperature on the binodal curves and the tie-lines for the investigated aqueous two-phase system have been studied. Also, the free energies of cloud points for this system and some previously studied systems containing PEGDME2000 were calculated from which it was concluded that the increase of the entropy is the driving force for formation of aqueous two-phase systems. Additionally, the calculated free energies for phase separation of the studied systems were used to investigate the salting-out ability of the salts having different anions. Furthermore, the complete phase diagram of the investigated system was compared with the corresponding phase diagrams of previously studied systems, in which the PEGDME2000 has been used, in order to obtain some information regarding the phase behavior of these PEGDME2000+salt+water systems.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, ,