| Article ID | Journal | Published Year | Pages | File Type | 
|---|---|---|---|---|
| 1559742 | Computational Materials Science | 2016 | 10 Pages | 
Abstract
												Based on first-principles calculations, the vacancy and self-interstitial formation energy in bcc-W are 3.19 eV and 9.97 eV. Binding energy between the dumbbell interstitials can be up to 2.29 eV. Binding energy for the first and second nearest neighbor vacancy pair are â0.12 eV and â0.41 eV. The migration barrier of vacancy, He, Ne and Ar interstitial are 1.70 eV, 0.07 eV, 0.15 eV and 0.25 eV. The migration barrier of self-interstitial along ã1 1 1ã is 0.05 eV. The so-called rotation barrier of self-interstitial is 0.35 eV. The formation energy of He, Ne, Ar substitutional and He, Ne, Ar tetrahedral interstitial are 4.85 eV, 6.42 eV, 9.54 eV and 6.23 eV, 10.40 eV, 15.10 eV, respectively. Binding energy for di-gas atom (He, Ne and Ar) interstitial are 0.95 eV, 2.28 eV and 1.70 eV. The binding energy of noble gas atom interstitial and vacancy cluster are obtained and can be used as an input to build a molecular dynamics (MD) W-Ne potential. Then molecular dynamics (MD) simulations can be used to investigate the mechanism and temperature dependence of the surface modification of plasma-facing tungsten in the application of future fusion reactors in the following investigations.
											Related Topics
												
													Physical Sciences and Engineering
													Engineering
													Computational Mechanics
												
											Authors
												Gui-Yang Huang, Niklas Juslin, Brian D. Wirth, 
											