Article ID Journal Published Year Pages File Type
1560108 Computational Materials Science 2015 5 Pages PDF
Abstract

We investigated the crystalline stacking and electronic properties of graphite-like layered BC3 using van der Waals density functional theory calculations. By exploring the energy landscape with respect to the stacking morphology, we identified two different stackings as the most stable structures which we investigated further in detail. Our calculations show that the electronic structure of this material dramatically changes from a semiconductor to a metal through the most likely direction of layer gliding between the energetically favored AB-stacking and an aligned AA-like stacked structure where B atoms sit on top of C atoms. These results could provide an explanation for the semimetallic character found in the experiments for the turbostratic form and open a venue for engineering the electronic properties of this material through the control of its crystalline structure.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,