Article ID Journal Published Year Pages File Type
1561071 Computational Materials Science 2014 8 Pages PDF
Abstract
With the ever-increasing sophistication of codes, the verification of the implementation of advanced theoretical formalisms becomes critical. In particular, cross comparison between different codes provides a strong hint in favor of the correctness of the implementations, and a measure of the (hopefully small) possible numerical differences. We lead a rigorous and careful study of the quantities that enter in the calculation of the zero-point motion renormalization of the direct band gap of diamond due to electron-phonon coupling, starting from the total energy, and going through the computation of phonon frequencies and electron-phonon matrix elements. We rely on two independent implementations: Quantum Espresso + Yambo and ABINIT. We provide the order of magnitude of the numerical discrepancies between the codes, that are present for the different quantities: less than 10-5 Ha per atom on the total energy (−5.722 Ha/at), less than 0.07 cm-1 on the Γ,L,X phonon frequencies (555-1330 cm-1), less than 0.5% on the square of the electron-phonon matrix elements and less than 4 meV on the zero-point motion renormalization of each eigenenergies (44-264 meV). Within our approximations, the DFT converged direct band gap renormalization in diamond due to the electron-phonon coupling is −0.409 eV (reduction of the band gap).
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , , , , ,