Article ID Journal Published Year Pages File Type
1562536 Computational Materials Science 2010 4 Pages PDF
Abstract

An overview of a recent series of ab initio molecular dynamics (AIMD) simulations for the liquid, undercooled states of materials forming metallic glasses is presented. Here we use a combination of state-of-the-art computational techniques to resolve the atomic-level structure of such disordered systems. The dynamic properties, such as the self-diffusion coefficients and viscosity, are also studied as a function of temperature in the undercooled regime. By analyzing two model systems that involve different chemistry, i.e. Cu-Zr and Au-Si systems, we identify the local icosahedral ordering as a fundamental process underlying structural relaxation. Our findings have also strong implications for understanding the nature of the glass forming ability and properties of metallic glasses.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,