Article ID Journal Published Year Pages File Type
1562588 Computational Materials Science 2010 6 Pages PDF
Abstract

A Monte Carlo simulation technique was utilized to model the recrystallization process of elongated grains in deformed metals with body-centered cubic crystalline structure. The initial microstructure was determined using Voronoi polygons. Two mechanisms, subgrain growth and strain-induced boundary migration, were considered for the nucleation of new grains during modeling of recrystallization. Each subgrain was considered to have specific orientation and stored energy. The simulation results indicated that the strain-induced boundary migration mechanism was the main contributor to the recrystallization process. The recrystallization kinetics can be described by an Avrami-type equation with a time exponent n of about 3.52, which is in agreement with time exponents reported in interstitial-free ferritic steels. A normal grain growth process was also observed in the simulated microstructure.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , , ,