Article ID Journal Published Year Pages File Type
156276 Chemical Engineering Science 2011 4 Pages PDF
Abstract

Drop breakup in viscous liquids in agitated vessels occurs in elongational flow around impeller blade edges. The drop size distributions measured over extended periods for impellers of different sizes show that breakup process continues up to 15–20 h, before a steady state is reached. The size distributions evolve in a self-similar way till the steady state is reached. The scaled size distributions vary with impeller size and impeller speed, in contrast with the near universal scaling known for drop breakup in turbulent flows. The steady state size of the largest drop follows inverse scaling with impeller tip velocity. The breadth of the scaled size distributions also shows a monotonic relationship with impeller tip velocity only.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,