Article ID Journal Published Year Pages File Type
1562827 Computational Materials Science 2010 10 Pages PDF
Abstract
In this study, object oriented finite element method (OOF) has been utilized to compute the thermal conductivity of plasma sprayed Al-12 wt.% Si containing 10 wt.% multiwall carbon nanotubes (CNTs). The computations have been made at micro- and macro-length scales which highlight the effect of CNT dispersion on thermal conductivity. Experimentally measured values at 50 °C indicate that CNT addition reduced the thermal conductivity of Al-Si matrix from 73 W m−1 K−1 to 25.4 W m−1 K−1 which is attributed to the presence of CNT clusters. OOF calculations at micro-length scale predicted an 81% increase in the conductivity of Al-Si matrix due to presence of well dispersed CNTs inside the matrix. At larger lengths scale, the decrease in the overall conductivity is related to the extremely low conductivity of CNT clusters. Thermal conductivity of CNT clusters could be up to three orders of magnitude lower than individual CNTs. OOF computed values match well with experimental results. OOF compute thermal conductivity of Al-CNT composite is also compared with theoretical two-phase models for CNT-composites at different length scales.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,