Article ID Journal Published Year Pages File Type
1563363 Computational Materials Science 2010 6 Pages PDF
Abstract

In this paper, nonlocal beam model is applied to the buckling analysis of single-walled carbon nanotubes (SWCNT) with effect of temperature change and surrounding elastic medium. The SWCNT is considered to be embedded in a Winkler-type elastic medium. The small scale and the thermal effects in SWCNT are incorporated through the nonlocal and thermal elasticity mechanics, respectively. Small-scale effects on buckling load are examined considering various parameters. These parameters include temperature change, aspect ratios, stiffness of Winkler-type elastic medium and mode numbers. The present study shows that at low temperature changes and large scale coefficient, the difference between local buckling load and nonlocal buckling load is comparatively large. Further it is found that the influence of temperature change on buckling load decreases in case of stiffer elastic medium.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,