Article ID Journal Published Year Pages File Type
1563559 Computational Materials Science 2009 10 Pages PDF
Abstract

Individual grains in a polycrystal rotate during plastic deformation. This leads to a change in the crystallographic texture, and results in an increase or decrease of the macroscopic flow stress of the material. Such a change of strength as a result of grain rotations is called geometrical or texture hardening/softening. In the present study, for textured aluminum alloy sheets, the geometrical hardening/softening effect in the in-plane plane-strain stretching mode is numerically investigated using a generalized Taylor-type polycrystalline model. It is found that the cube texture ({100}〈001〉) exhibits significant geometrical hardening when the major stretching direction is inclined at 45° relative to the orthotropic axes, and that a cube texture rotated about the normal direction (ND) shows a notable degree of geometrical hardening for any in-plane orientation of the sheet. Using the Marciniak-Kuczyński-type approach, forming limits for these textured sheets are analyzed. It is found that geometrical hardening definitely enhances the formability. It is, therefore, strongly suggested that texture control guided by the present results may be highly effective in producing aluminum alloy sheets with higher formability.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , ,