Article ID Journal Published Year Pages File Type
1563565 Computational Materials Science 2009 4 Pages PDF
Abstract

Molecular dynamics simulations of liquid transition metals Ni and Cu have been performed with the tight-binding potential model. The surface tensions of the liquid metals at different temperatures are evaluated using both methods of calculating the work of cohesion and of using the mechanical expression for the surface stress. The calculated surface tension data are compared with available experimental values. The simulated results for Ni are in good agreement with experiment, but those for Cu show about 10–20% underestimation. Comparing with the mechanical method, the data of surface tension calculated using the method of cohesive work show remarkable dependence on temperature, and the estimated temperature coefficients of liquid Ni and Cu are consistent with the experimental data.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,