Article ID Journal Published Year Pages File Type
1563796 Computational Materials Science 2007 5 Pages PDF
Abstract

A multi-objective optimization methodology for the aging process parameters is proposed which simultaneously considers the mechanical performance and the electrical conductivity. An optimal model of the aging processes for Cu–Cr–Zr–Mg is constructed using artificial neural networks and genetic algorithms. A supervised artificial neural network (ANN) to model the non-linear relationship between parameters of aging treatment and hardness and conductivity properties is considered for a Cu–Cr–Zr–Mg lead frame alloy. Based on the successfully trained ANN model, a genetic algorithm is adopted as the optimization scheme to optimize the input parameters. The result indicates that an artificial neural network combined with a genetic algorithm is effective for the multi-objective optimization of the aging process parameters.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , , ,