Article ID Journal Published Year Pages File Type
156381 Chemical Engineering Science 2010 6 Pages PDF
Abstract

Steady and unsteady mass transfer in the continuous phase around slightly deformed oblate spheroidal drops at low (but not zero) Reynolds numbers was investigated theoretically. Asymptotic analytical solutions for short and long times, at large Peclet numbers, were obtained by the useful equations derived by Lochiel and Calderbank and by Favelukis and Mudunuri for axisymmetric drops of revolution, with the only requirements being the shape of the drop and the tangential velocity at the surface of the drop. As expected, the result, although complicated, represents a small correction to the classical problem of mass transfer around a spherical drop under creeping flow conditions, since the physical problem presented here requires both the Reynolds and the Weber number to be much smaller than one.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
,