Article ID Journal Published Year Pages File Type
1563893 Computational Materials Science 2009 15 Pages PDF
Abstract
A finite element analysis of the large deformation of three-dimensional polycrystals is presented using pixel-based finite elements as well as finite elements conforming with grain boundaries. The macroscopic response is obtained through volume-averaging laws. A constitutive framework for elasto-viscoplastic response of single crystals is utilized along with a fully-implicit Lagrangian finite element algorithm for modeling microstructure evolution. The effect of grain size is included by considering a physically motivated measure of lattice incompatibility which provides an updated shearing resistance within grains. A domain decomposition approach is adopted for parallel computation to allow efficient large scale simulations. Conforming grids are adopted to simulate flexible and complex shapes of grains. The computed mechanical properties of polycrystals are shown to be consistent with experimental results for different grain sizes.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, ,