Article ID Journal Published Year Pages File Type
1563907 Computational Materials Science 2009 5 Pages PDF
Abstract

In analyzing microstructure evolution of material, study for the process of grain growth is both theoretically and practically significant. On (1 1 1) and (1 1 0) facets, the process of CVD–SiC film in two-dimension is simulated with Potts Monte Carlo method. The relationship between the microstructure morphology and growth rate, nucleating density is analyzed. The simulation result is given as the following. Both competitive growth and coarsening effect have been found in the growth process. The increase of nucleation density results in thinning of the grain size in SiC film. The grain size distribution is found to be self-similar, not differed with the corresponding growth parameter. The fitted result of Weibull and Louat function is better than that of lognormal function obviously. The result is in agreement with the corresponding theory and experiment conclusion well.

Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , ,