Article ID Journal Published Year Pages File Type
1563994 Computational Materials Science 2006 10 Pages PDF
Abstract
Potentials generally used in molecular dynamics (MD) simulation of SiO2 properties customarily are calibrated to a combination of computed molecular electronic structure data and experimental crystalline data. The present study tests parametrization to data from high-level, first-principles electronic structure calculations alone. The issue is crucial to the success of multi-scale simulations. They require a consistent embedding of the so-called quantum mechanical region (the region in which the forces come from gradients of quantum mechanical total energies) in a classical inter-ionic potential region. The evident challenge is generation of a quantum mechanically consistent parametrization. A simple probe of the issue is to see how parametrization solely from first-principles data influences the simulation outcomes. We parametrized a widely used form of effective inter-ionic potential for SiO2 and did MD simulations of tensile failure in a 72 formula unit SiO2 nanorod. Separate parametrizations were done to high quality calculated data for H4SiO4 and H6Si2O7 clusters and for α-quartz. The differing parametrizations yield quantitative differences in the prediction of the yield strength and even semi-qualitative differences in the system behavior in that region. Some superficially similar parametrizations do not even provide a stable T = 0 K configuration. These differences highlight the crucial distinction between potential parametrization aimed at replacing realistic quantum mechanical forces entirely in an MD calculation versus a parametrization aimed at embedding an explicitly QM region.
Related Topics
Physical Sciences and Engineering Engineering Computational Mechanics
Authors
, , , , , , , ,