Article ID Journal Published Year Pages File Type
1564591 Energy Storage Materials 2016 44 Pages PDF
Abstract
Lithium ion batteries are essential energy storage devices that power the electronics that let us share information and connect with people anywhere at any time. As the demand for uninterrupted energy performance rises, corresponding challenges need to be overcome in both industry and academia. Currently, cathode performance limits energy-power density in Li-ion batteries. Materials chemists and scientists have devoted much effort to explore cathodes with higher capacities and electrochemical potentials. Lithium vanadium phosphate, a rising star in the cathode family, has attracted more attention in recent years because it can display a high average potential (>4.0 V) and specific capacity (197 mAh/g) with excellent structural stability during cycling. However, the separated VO6 octahedra intrinsically limit electrical conductivity, which hurts the rate capability. This review focuses on the fundamental issues in lithium vanadium phosphate and summarizes its crystal structure, ion diffusion, and electrochemical characteristics. Three synthetic aspects are described carefully: doping, composite and designing microstructures. At the same time, some rules are distilled from the report results, which may be referred to in order to tune the electrochemical performance in electrode materials.
Related Topics
Physical Sciences and Engineering Energy Fuel Technology
Authors
, , , ,