Article ID Journal Published Year Pages File Type
156522 Chemical Engineering Science 2011 9 Pages PDF
Abstract

Biphasic hydroformylation of 1-octene was performed using rhodium sulfoxantphos catalyst dissolved in [BuPy][BF4] ionic liquid. Preliminary experiments proved this system to retain the catalytic complex within the ionic liquid phase and to maintain a high selectivity towards the linear aldehyde (n:iso ratio of 30) over several cycles. Process parameter investigation showed a first order dependence of the initial rate with respect to the catalyst and 1-octene concentrations, but a more complex behavior with respect to hydrogen (fractional order) and carbon monoxide partial pressures (inhibition at high pressures). Different mathematical models were selected based on the trends observed and evaluated for data fitting. Also, rate models were derived from a proposed mechanism, using Christiansen matrix approach. To calculate concentrations of substrates in the catalytic phase as required by this kinetic modeling, solubility measurements were preformed for the gases (pressure drop technique), as well as for 1-octene and n-nonanal (thermogravimetry analysis).

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,