Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
156623 | Chemical Engineering Science | 2010 | 12 Pages |
Flow behavior of gas and agglomerates is numerically investigated in fluidized beds using a transient two-fluid model. It is assumed that the particles move as agglomerates rather than single particles in the gas–cohesive particles fluidized beds. The present model is coupled a modified kinetic theory model proposed by Arastoopour (2001) with an agglomerate-based approach (ABA). The interaction between gas and agglomerates is considered. The agglomerates properties are estimated from the ABA. Predictions are compared with experimental data measured by Jiradilok (2005) in a bubbling fluidized bed and Li and Tong (2004) in a circulating fluidized bed. The distributions of velocity, concentration and diameter of agglomerates, and pressure drop are numerically obtained. The influences of the contact bonding energy on the distributions of velocity and concentration of agglomerates are analyzed.