Article ID Journal Published Year Pages File Type
157240 Chemical Engineering Science 2009 5 Pages PDF
Abstract

Pressure drop characteristics of flow in a periodically grooved channel are investigated experimentally. It is well known that a self-sustained oscillatory flow occurs from a steady-state flow at a certain critical Reynolds number in such grooved channels. The oscillatory flow enhances fluid mixing and leads to an increase in pressure drop. We measure the pressure drop with a pressure transducer. It is found that the pressure drop increases near the critical Reynolds numbers where the two- and three-dimensional oscillatory flows occur. In addition, the three-dimensional flow is confirmed by flow visualization.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,