Article ID Journal Published Year Pages File Type
1572412 Materials Characterization 2010 6 Pages PDF
Abstract

The microstructure and texture evolution of low-stacking fault energy high-manganese austenitic steel during tensile testing at room temperature was studied by means of interrupted tests. Untested material shows fully recrystallized austenitic grains and an almost random texture. During deformation, two deformation mechanisms, mechanical twinning and dislocation gliding, compete with each other. The governing mechanism of a single grain will depend on its crystallographic orientation relative to tensile direction. As a result of the strong interaction between grain orientation and twinning activity at low tensile strain, both grains with and without deformation twins can be observed. However, at high strain all the grains exhibited twin bands. Tensile tested samples were characterized by the presence of a fiber texture with the <111> and <100> directions parallel to the tensile direction.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, ,