Article ID Journal Published Year Pages File Type
1572578 Materials Characterization 2007 8 Pages PDF
Abstract

The isothermal oxidation kinetics of sputter-deposited equiatomic Ti–Ni thin films in pure oxygen from 823 to 923 K is studied using thermo-gravimetric analysis. The structure, composition-depth distribution and surface morphology of oxidized Ti–Ni thin films are investigated by X-ray diffraction (XRD), Auger electron spectroscopy (AES) and atomic force microscope (AFM), respectively. The results show that the oxidation kinetics of Ti–Ni thin films obeys a near-parabolic law. TiO2, TiNi3 and parent B2 phase are the compositions of oxidized Ti–Ni thin films. A double-layered scale including the outermost layer and the Ni-rich layer is formed outside the B2 matrix of oxidized Ti–Ni thin films. Moreover, thermal oxidation induces a surface smoothening of Ti–Ni thin films and surface roughness of oxidized Ti–Ni films decreases with the increasing oxidation temperature.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , ,