Article ID Journal Published Year Pages File Type
1573320 Materials Science and Engineering: A 2016 10 Pages PDF
Abstract
The effects of the morphology and distribution of cementite on damage formation were studied using in situ scanning electron microscopy under monotonic and cyclic tension. To investigate the effects of the morphology/distribution of cementite, intergranular cementite precipitation (ICP) and transgranular cementite precipitation (TCP) steels were prepared from an ingot of Fe-0.017 wt% C binary alloy using different heat treatments. In all cases, the damage incidents were observed primarily at the grain boundaries. The damage morphology was dependent on the cementite morphology and loading condition. Monotonic tension in the ICP steel caused cracks across the cementite plates, located at the grain boundaries. In contrast, fatigue loading in the ICP steel induced cracking at the ferrite/cementite interface. Moreover, in the TCP steel, monotonic tension- and cyclic tension-induced intergranular cracking was distinctly observed, due to the slip localization associated with a limited availability of free slip paths. When a notch is introduced to the ICP steel specimen, the morphology of the cyclic tension-induced damage at the notch tip changed to resemble that across the intergranular cementite, and was rather similar to the monotonic tension-induced damage. The damage at the notch tip coalesced with the main crack, accelerating the growth of the fatigue crack.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , , ,