Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1573401 | Materials Science and Engineering: A | 2016 | 9 Pages |
Abstract
The microstructural evolution and room-temperature mechanical properties of Fe50Al50ânNbn alloys (n=1, 3, 5, 7, and 9 at%) were investigated after solidification and subsequent heat treatment. For all the compositions, the (Fe, Al)2Nb Laves phase formed because of the incomplete solid solubility of Nb in the Fe-Al-based phases and tended to develop an eutectic mixture with the Fe-Al-based phase. According to the results of EDS analysis and microstructural investigations, the Nb concentration of the eutectic composition was 9 at%, and the solid solubility of Nb in the B2-type Fe-Al-based phase was 3 at%. In addition, the eutectic phase transition temperature was approximately 1265 °C. Compared with the as-cast state, all the heat-treated alloys exhibited ultrahigh compressive strength and considerably increased compressive fracture strains. The heat-treated hypoeutectic Fe50Al47Nb3 alloy exhibited the highest compressive strength and fracture strain of 3.02 GPa and 33.1%, respectively, and the eutectic Fe50Al41Nb9 alloy exhibited the lowest compressive strength and fracture strain of 2.66 GPa and 21.8%, respectively, because of the absence of the comparably softer Fe-Al-based primary dendrites. The superior mechanical properties of the heat-treated alloys were attributed to the bimodal distribution of the microstructure, structural incoherency between the crystalline phases, and elimination of solidification artifacts and lattice defects.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Mehmet Yildirim, M. Vedat Akdeniz, Amdulla O. Mekhrabov,