Article ID Journal Published Year Pages File Type
1573820 Materials Science and Engineering: A 2016 6 Pages PDF
Abstract
In the present paper, the effect of twist extrusion (TE) on the variations of hardness and tensile properties in commercial pure copper is investigated. It is found that hardness, yield and ultimate tensile strength of the alloy increased by increasing distance from the center of the sample after one pass TE. Similar consequences are observed when the second pass of deformation is considered. This is attributed to inhomogeneity of deformation and the higher strain imposed on the material at the peripheral regions. It should be noted that the inhomogeneity is increased at the second pass when route A of deformation is utilized and reduces by utilization of route D. This has as a well-established effect on the development of microstructure throughout the cross section of the samples. In fact, it is found that the microstructure at the peripheral regions is more significantly deformed leading to higher dislocation density and extensive subgrain formation. In addition, it is found that at the second pass using route A, inhomogeneity of deformation and microstructure increases. However, less inhomogeneity is observed when route D is utilized which is in line with the hardness and tensile test results. In the end, it is concluded that depending on the aim of the SPD process, if more homogeneous deformation and microstructure is required, route D is recommended and route A should be utilized in case if maximum inhomogeneity is desirable.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,