Article ID Journal Published Year Pages File Type
1574266 Materials Science and Engineering: A 2015 27 Pages PDF
Abstract
The present study was aimed to investigate the mechanical properties of a nano/ultrafine grained Nb-containing 201 austenitic stainless steel. For this purpose, 90% cold rolled sheets with fully martensitic microstructure were isothermally annealed at 900 °C for different times of 1 to 1800 s, leading to the reversion of strain- induced α′-martensite to austenite and significant grain refinement. Ferritescopy, X-ray diffractometery and optical/electron microscopy techniques along with hardness measurements and tensile tests were used to study the evolution in microstructure and mechanical properties in the course of annealing. It was found that heavy cold-rolling promoted formation of Nb-rich carbonitrides which effectively retarded the growth of fine reverted austenite grains. The obtained results showed that the complete transformation of martensite to austenite took about 60 s with the corresponding austenite grain size of about 90 nm. This sample had an ultrahigh yield strength of 1170 MPa, which was almost four times higher than that of the raw material and outstanding elongation of 37%. Further, the true stress-strain curves of the reversion annealed samples revealed two distinct uniform elongation stages (stage I and stage II), whereas, the onset of stage II was concurrent with pronounced strain hardening. This was related to the sharp increase in the formation of α′-martensite upon tensile straining.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , ,