Article ID Journal Published Year Pages File Type
1574518 Materials Science and Engineering: A 2015 13 Pages PDF
Abstract
Effects of heat treatment temperature and time on the microstructure and shape memory behaviors (e.g. transformation temperatures, load-biased shape memory effect, superelasticity, two-way shape memory effect, and related properties) were investigated in a Ni45.3Ti29.7Hf20Cu5 (at%) high temperature polycrystalline shape memory alloy. Heat treatments could be used to control the TTs and to a lesser extent recoverable and irrecoverable strains. The Ni45.3Ti29.7Hf20Cu5 alloy was capable of recovering shape memory strains of up to 2% at temperatures above 100 °C under high compressive stresses (700 MPa) and up to 0.8% TWSME strain was possible after a non-intense stress-cycling training process. However, due to high Clausius-Clapeyron slopes, large temperature hysteresis, and a strong dependence of transformation stress on temperature, fully recoverable superelastic behavior was not observed because plastic deformation occurred concurrently with the stress-induced martensitic transformation.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , , , , , , ,