Article ID Journal Published Year Pages File Type
1574569 Materials Science and Engineering: A 2015 6 Pages PDF
Abstract
Because of its great importance in modern engineering and technology applications, steel continues to be highly relevant in the modern research field of nanocrystalline materials. Innovative processing methods and procedures are required for the production of such materials, which possess superior properties compared to their conventional counter parts. In this research, the original microstructure of a commercial C45 steel (Fe, 0.42-0.5 wt% C, 0.5-0.8 wt% Mn) was modified from ferritic-pearlitic to bainitic. Warm high pressure torsion for 5 rotations at 6 GPa and 350 °C was used to process the bainitic sample leading to an ultrafine/nano-scale grain size. A unique nano-crystalline microstructure consisting of equiaxed and elongated ferrite grains with a mean size smaller than 150 nm appeared in images taken by Transmission Electron Microscopy. Results of in-situ tensile testing in a scanning electron microscope showed very high tensile strength, on the order of 2100 MPa with a total elongation of 4.5% in comparison with 800 MPa and around 16% in the original state. Fracture occurred abruptly, without any sign of necking, and was typically caused by the stress concentration at a surface flaw. Also, stress concentrations near all surface defects were observed on the sample, visualized by the formation of shear bands. The fracture surface was covered with dimples, indicating ductile fracture. These properties are fully comparable with high strength, high alloyed steels.
Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , ,