Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1574659 | Materials Science and Engineering: A | 2014 | 12 Pages |
Abstract
Stress corrosion cracking susceptibility was investigated for an ultra-fine grained (UFG) Al-7.5Mg alloy and a conventional 5083 H111 alloy in natural seawater using slow strain rate testing (SSRT) at very slow strain rates between 1Eâ5Â sâ1, 1Eâ6Â sâ1 and 1Eâ7Â sâ1. The UFG Al-7.5Mg alloy was produced by cryomilling, while the 5083 H111 alloy is considered as a wrought manufactured product. The response of tensile properties to strain rate was analyzed and compared. Negative strain rate sensitivity was observed for both materials in terms of the elongation to failure. However, the UFG alloy displayed strain rate sensitivity in relation to strength while the conventional alloy was relatively strain rate insensitive. The mechanical behavior of the conventional 5083 alloy was attributed to dynamic strain aging (DSA) and delayed pit propagation while the performance of the UFG alloy was related to a diffusion-mediated stress relaxation mechanism that successfully delayed crack initiation events, counteracted by exfoliation and pitting which enhanced crack initiation.
Keywords
Related Topics
Physical Sciences and Engineering
Materials Science
Materials Science (General)
Authors
Mala M. Sharma, Josh D. Tomedi, Timothy J. Weigley,