Article ID Journal Published Year Pages File Type
1574808 Materials Science and Engineering: A 2014 7 Pages PDF
Abstract

Structure–mechanical property relationship studies were carried out on Gleeble simulated intercritically reheated coarse-grained heat affected zone (ICCGHAZ) of 700 MPa linepipe steel microalloyed with Nb. The design of experiments was aimed at varying reheat temperature in the first pass to obtain different coarse grain size in the HAZ. This enabled the study of the effect of prior austenite grain size on martensite–austenite (M–A) constituent during the second pass reheating and its consequent influence on impact toughness. We elucidate here the role of phase transformation and the fraction, size, shape, distribution, and carbon content of M–A constituent on impact toughness. The data suggests that the fraction of M–A constituent is not influenced by grain size, but the size of M–A constituent is influenced by the prior austenite grain size, which consequently governs toughness. Coarse austenite grain size increases the size of M–A constituent and lowers the HAZ toughness. Coarse austenite grain associated with coarse M–A constituent along grain boundary is the dominant factor in promoting brittle fracture. The combination of fine prior austenite grain size and smaller M–A constituent is favorable in obtaining high toughness. Good toughness is obtained on refining the prior austenite grain size in the CGHAZ during first pass and hence ICCGHAZ in the second pass.

Related Topics
Physical Sciences and Engineering Materials Science Materials Science (General)
Authors
, , , , ,